首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3284篇
  免费   285篇
  2023年   13篇
  2022年   16篇
  2021年   77篇
  2020年   47篇
  2019年   69篇
  2018年   100篇
  2017年   59篇
  2016年   121篇
  2015年   186篇
  2014年   166篇
  2013年   255篇
  2012年   277篇
  2011年   267篇
  2010年   161篇
  2009年   161篇
  2008年   192篇
  2007年   197篇
  2006年   166篇
  2005年   175篇
  2004年   166篇
  2003年   115篇
  2002年   136篇
  2001年   31篇
  2000年   31篇
  1999年   30篇
  1998年   37篇
  1997年   20篇
  1996年   20篇
  1995年   17篇
  1994年   23篇
  1993年   17篇
  1992年   21篇
  1991年   16篇
  1990年   17篇
  1989年   6篇
  1988年   14篇
  1987年   12篇
  1986年   7篇
  1985年   16篇
  1984年   11篇
  1983年   14篇
  1982年   10篇
  1981年   8篇
  1980年   10篇
  1979年   10篇
  1978年   8篇
  1976年   8篇
  1975年   8篇
  1969年   3篇
  1968年   3篇
排序方式: 共有3569条查询结果,搜索用时 312 毫秒
61.
Congenital melanocytic nevi (CMN) are cutaneous malformations whose prevalence is inversely correlated with projected adult size. CMN are caused by somatic mutations, but epidemiological studies suggest that germline genetic factors may influence CMN development. In CMN patients from the U.K., genetic variants in MC1R, such as p.V92M and loss‐of‐function variants, have been previously associated with larger CMN. We analyzed the association of MC1R variants with CMN characteristics in two distinct cohorts of medium‐to‐giant CMN patients from Spain (N = 113) and from France, Norway, Canada, and the United States (N = 53), similar at the clinical and phenotypical level except for the number of nevi per patient. We found that the p.V92M or loss‐of‐function MC1R variants either alone or in combination did not correlate with CMN size, in contrast to the U.K. CMN patients. An additional case–control analysis with 259 unaffected Spanish individuals showed a higher frequency of MC1R compound heterozygous or homozygous variant genotypes in Spanish CMN patients compared to the control population (15.9% vs. 9.3%; p = .075). Altogether, this study suggests that MC1R variants are not associated with CMN size in these non‐UK cohorts. Additional studies are required to define the potential role of MC1R as a risk factor in CMN development.  相似文献   
62.
63.
BackgroundChagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance.Methodology/principal findingsWe used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs.Conclusions/significanceThese observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests.  相似文献   
64.
Current approaches that compare spatial genetic structure of a given species and the dispersal of its mobile phase can detect a mismatch between both patterns mainly due to processes acting at different temporal scales. Genetic structure result from gene flow and other evolutionary and demographic processes over many generations, while dispersal predicted from the mobile phase often represents solely one generation on a single time-step. In this study, we present a spatial graph approach to landscape genetics that extends connectivity networks with a stepping-stone model to represent dispersal between suitable habitat patches over multiple generations. We illustrate the approach with the case of the striped red mullet Mullus surmuletus in the Mediterranean Sea. The genetic connectivity of M. surmuletus was not correlate with the estimated dispersal probability over one generation, but with the stepping-stone estimate of larval dispersal, revealing the temporal scale of connectivity across the Mediterranean Sea. Our results highlight the importance of considering multiple generations and different time scales when relating demographic and genetic connectivity. The spatial graph of genetic distances further untangles intra-population genetic structure revealing the Siculo-Tunisian Strait as an important corridor rather than a barrier for gene flow between the Western- and Eastern Mediterranean basins, and identifying Mediterranean islands as important stepping-stones for gene flow between continental populations. Our approach can be easily extended to other systems and environments.  相似文献   
65.
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector‐borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next‐generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.  相似文献   
66.
Understanding how interspecific interactions mould the molecular basis of adaptations in coevolving species is a long‐sought goal of evolutionary biology. Venom in predators and venom resistance proteins in prey are coevolving molecular phenotypes, and while venoms are highly complex mixtures it is unclear if prey respond with equally complex resistance traits. Here, we use a novel molecular methodology based on protein affinity columns to capture and identify candidate blood serum resistance proteins (“venom interactive proteins” [VIPs]) in California Ground Squirrels (Otospermophilus beecheyi) that interact with venom proteins from their main predator, Northern Pacific Rattlesnakes (Crotalus o. oreganus). This assay showed that serum‐based resistance is both population‐ and species‐specific, with serum proteins from ground squirrels showing higher binding affinities for venom proteins of local snakes compared to allopatric individuals. Venom protein specificity assays identified numerous and diverse candidate prey resistance VIPs but also potential targets of venom in prey tissues. Many specific VIPs bind to multiple snake venom proteins and, conversely, single venom proteins bind multiple VIPs, demonstrating that a portion of the squirrel blood serum “resistome” involves broad‐based inhibition of nonself proteins and suggests that resistance involves a toxin scavenging mechanism. Analyses of rates of evolution of VIP protein homologues in related mammals show that most of these proteins evolve under purifying selection possibly due to molecular constraints that limit the evolutionary responses of prey to rapidly evolving snake venom proteins. Our method represents a general approach to identify specific proteins involved in co‐evolutionary interactions between species at the molecular level.  相似文献   
67.
The parasitic filarioid Onchocerca lupi causes ocular disease characterized by conjunctivitis and nodular lesions. This nematode was first described in 1967 in a wolf from Georgia, and since then cases of infection from dogs and cats with ocular onchocercosis and sporadically from humans also with subcutaneous and cervical lesions caused by O. lupi have been reported from the Middle East, Europe, and North America. Due to its zoonotic potential, this parasitic infection has gained attention in the past 20 years. Phylogenetic studies have highlighted the recent divergence of O. lupi from other Onchocerca spp. and the importance of domestication in the evolutionary history of this worm. Moreover, the finding of an O. lupi genotype associated with subclinical and mild infection in the Iberian Peninsula, raises important questions about the pathogenicity of this presently enigmatic parasite.  相似文献   
68.
69.
The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.  相似文献   
70.
Infections with nodavirus affect a wild and farmed fish species throughout the world, mostly from the marine environment. The aim of this work was to determine the immune status of gilthead sea bream that comes as a result of a Nodavirus infection, induced by activation of the interferon response pathway by lipopolysaccharides from Vibrio alginolyticus and the expression of interferoninduced Mx protein in liver samples. The enhancement of Mx protein gene expression was detected in liver samples of experimentally nodavirus infected fish and, furthermore, the immunostimulant LPS of V. alginolyticus decreased almost three times the virus titration with respect to no-immunized or infected with nodavirus group of fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号